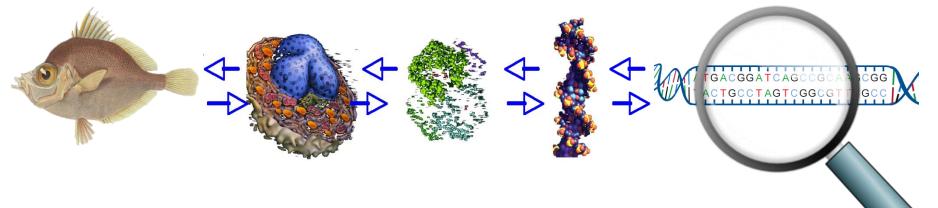

Fisheries Genetics for Stock Identification

NWWAC 1st March 2017, Paris

Edward Farrell & Jens Carlsson University College Dublin, Ireland

Why is stock Identification essential?

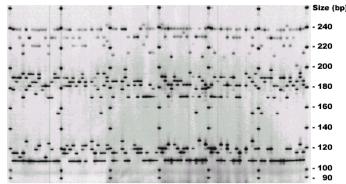
Stock assessment assumptions

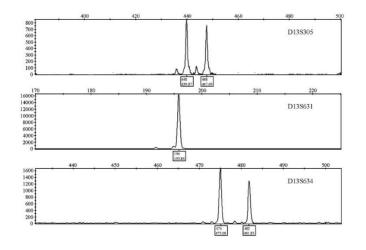

- 1. Stock is a closed population
 - a) Gain through recruitment not immigration
 - b) Loss through mortality not emigration
- 2. Data represents entire stock
 - a) Even distribution of catches (fisheries dependent data)
 - b) Survey covers entire stock area (fisheries independent data)
- Stock Identification is essential prerequisite for stock assessment
- Most assessments do not have good stock resolution

Stock Identification methods

Indirect methods

- Tagging = physical movement, migrations, mixing
- Morphology and biology = physical appearance and characteristics
 - Combination of genetics and environment
- Direct methods
 - Genetics
 - Examining differences in genetic code
 - Widely used in medical and agricultural sciences, fisheries is lagging behind
 - Used to be slow, expensive and low power to detect stock structure
 - Recent advances have made it more applicable to stock Identification
 - Next Generation Sequencing (NGS)
 - Genotyping by Sequencing (GBS)

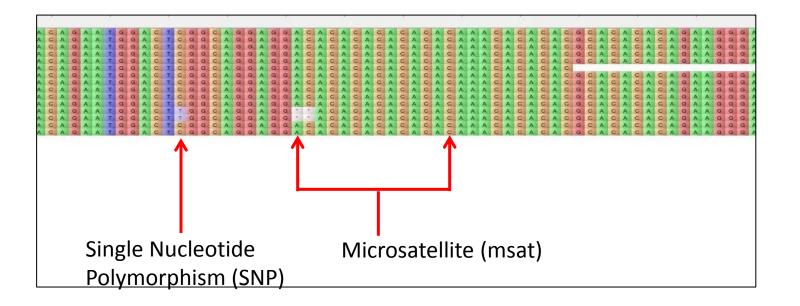

Basis of genetic stock Identification = DNA

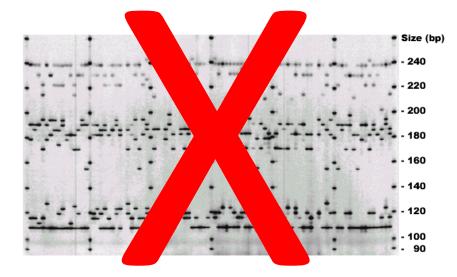


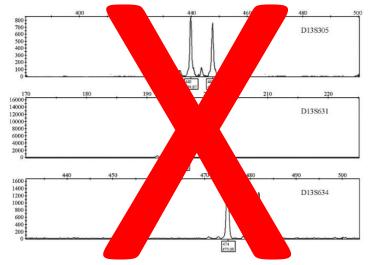
- Every cell has masses of DNA
- Blueprint of the organism = Simple 4 base code –ATGC
- 2 metres of DNA in every human cell
- Masses of potential info about individuals and populations
- Need tools to extract the relevant info
- Different studies require different info at different levels
- Genetic Markers

Traditional Fisheries Genetics

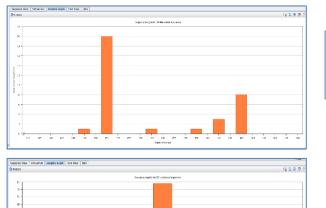
- Costly and difficult to develop markers
- Low numbers of informative markers
- Poor resolution
- Low reproducibility between labs
- One-off studies (MSc/PhD)
- Academic bias
- No annual monitoring
- Limited contribution to assessments



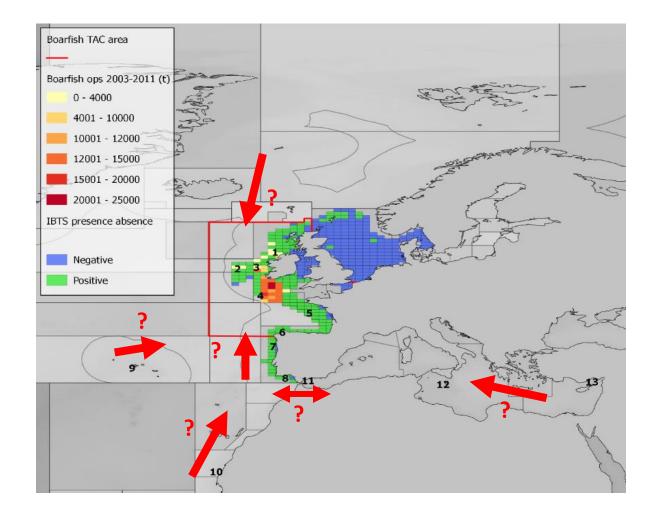

Next Generation Fisheries Genetics


Current Development

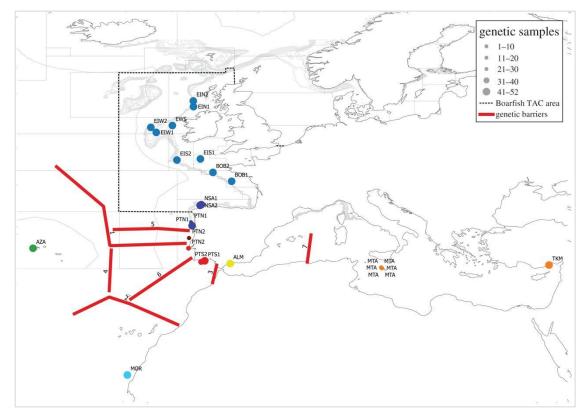
- Cheaper, Faster, Better, More
- Next Generation Sequencing (NGS)
- Genotyping By Sequencing (GBS)






Heterozygote 151 163

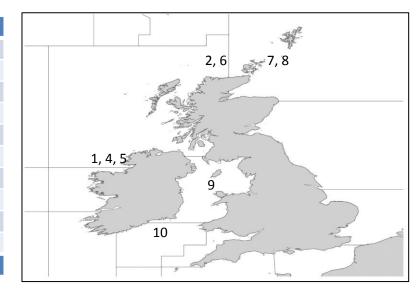
151 151


Example 1: Boarfish

- Does assessment/management area align with the population structure?
- Is there population structure within the assessment/management area?
- Is there immigration into the assessment/management area?

Example 1: Boarfish

- De novo generation of 85 microsatellite markers
- 960 samples screened in a single sequencing run
- Rapid identification of populations
- Fine scale resolution e.g. Portuguese mixing zone
- Results that can be used for better assessment and management
- Annual monitoring of the stock possible

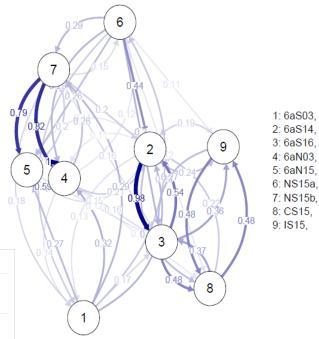

Example 1: Boarfish

- No previous genetic information available for boarfish
- 85 de novo microsatellites
- Not feasible using conventional methods
- 960 individuals @ 85 msats = 81,600 genotypes
- ABI platform (old method of capillary electrophoresis)
 - c. €4 per genotype
 - c. €326,400 in lab costs and at least 3 years
- Next Generation Genotyping-By-Sequencing
 - c. €15,000 in lab costs and 2 months C. €0.18 per genotype
- Further optimisation and automation is possible

Example 2: 6a/7bc Herring

- 6aN versus 6aS & 7b,c
- Separate populations?
- Separate assessments?
- WESTHER (2003-2006) found no significant population structure in 6a
- KFO pilot study to reanalyse the WESTHER samples found significant structure
- Full scale project started 2016


#	Baseline samples	Code	Year	n
1	WESTHER Donegal	6AS03	2003	86
2	WESTHER Cape Wrath	6AN03	2003	84
3	WESTHER western Baltic	BLT	2004	22
4	VIaS	6AS14	2014	192
5	VlaS	6AS16	2016	192
6	VIaN	6AN15	2015	96
7	North Sea	NS15a	2015	96
8	North Sea	NS15b	2015	48
9	Irish Sea	IS15	2015	96
10	Celtic Sea	CS15	2015	96
	Total			1008


Example 2: 6a/7bc Herring

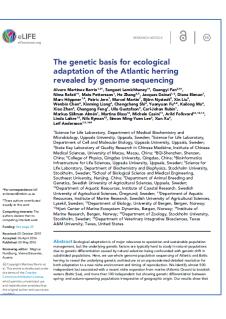
	6aS03	6aS14	6aS16	6aN03	6aN15	NS15a	NS15b	CS15	IS15
6aS03		0.00836	0.018246	0.003953	0.007455	-0.00123	0.004131	0.036781	0.036305
6aS14	0.0207		0.000737	0.013192	0.015792	0.010789	0.017748	0.007682	0.009339
6aS16	0.0001	0.2758		0.021582	0.023702	0.02185	0.027401	0.002068	0.004507
6aN03	0.1628	0.0008	0.0001		-0.0066	0.004444	-0.00304	0.029808	0.030132
6aN15	0.058	0.0001	0.0001	0.9906		0.008743	-0.0007	0.031737	0.030705
NS15a	0.488	0.0255	0.0001	0.1907	0.084		0.002005	0.036629	0.037535
NS15b	0.1238	0.0008	0.0001	0.7753	0.5163	0.2831		0.037805	0.037175
CS15	0.0001	0.0071	0.1662	0.0001	0.0001	0.0001	0.0001		-0.0007
IS15	0.0001	0.0082	0.0585	0.0001	0.0001	0.0001	0.0001	0.5012	

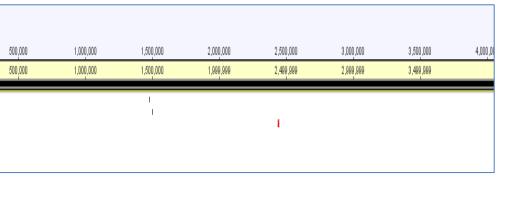
- Analysis ongoing
- Informative markers identified

Relative migration network (Filter threshold = 0.1; Gst)

Where are the informative markers?

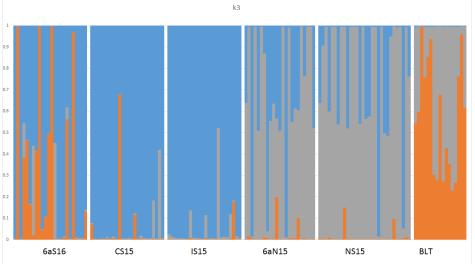
Any additional markers near them?

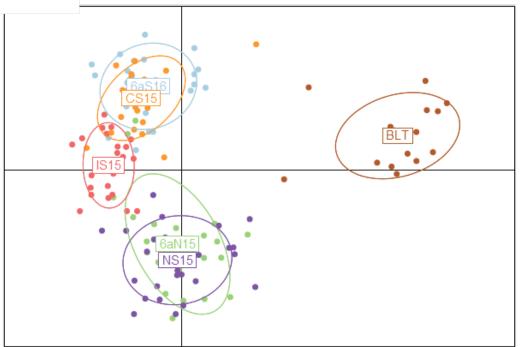

	50,000) 10	0,000 15	0,000	200,00	00	250,000	300,000	35	000	400,000	40	000	500,000	550,000	60	00,000	650,000	700,	000	750,000	800,000	0 8	50,000		950,000	0 985,199
						11				I				11	1	1						1			\square		
														<u> </u>	•							<u> </u>		=			
	377,500	380,000	382,500 385	,000 38	87,500	390,000	392,500	395,000	397,500	400,000	402,500	405,000	407,500	410,489	412,500	415,000	417,500	420,000	422,500	425,000	427,500	430,000	432,500	435,000	437,500	440,000	442,500
	265,835	268,275	268,652 268	,825 26	69,037	270,999	273,483	275,924	277,719	279,959	282,400	284,839	286,148	289 034	291,010	293,457	295,620	297,094	299,541	301,808	304,174	306,563	309,018	309,583	310,937	312,871	315,331
De		-							-++-		 	+1		- - 										1			


Zoom in to see reads

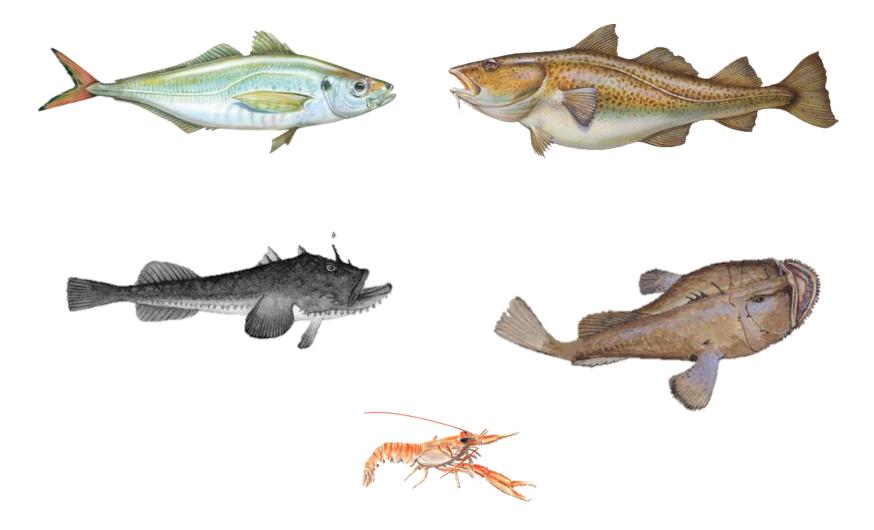
Cherry-pick markers from other studies

- Draft Herring genome (Martinez Barrio et al., 2016)
- Identify relevant areas
- 70 SNPs related to spawning time
- Now screened a subset of baseline samples
- Very preliminary results




Very preliminary herring SNP results

- 70 SNPs related to spawning time
- 6aS16 (24), 6aN15 (23), IS15 (24), CS15 (24), NS15 (30), BLT (17)
- 56/70 SNPs successfully scored


	6aS16	6aN16	IS15	CS15	NS15	BLT
6aS16		0.214343	0.136576	0.108908	0.289566	0.358375
6aN16	0.0001		0.281802	0.328253	0.003487	0.433712
IS15	0.0001	0.0001		0.12493	0.370546	0.634549
CS15	0.0019	0.0001	0.0001		0.419047	0.615281
NS15	0.0001	0.2741	0.0001	0.0001		0.465325
BLT	0.0001	0.0001	0.0001	0.0001	0.0001	

Very preliminary herring SNP results

Other stock ID Projects

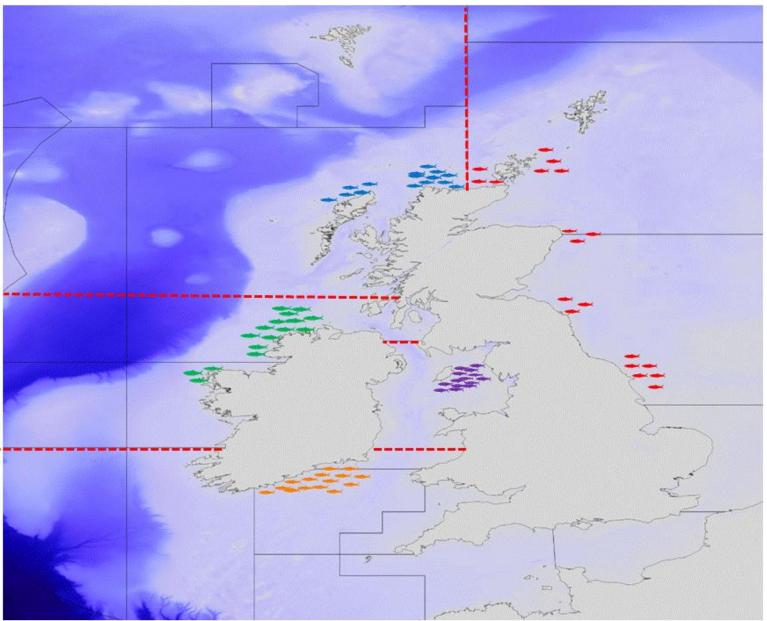
Further Optimisation

Upscale

- Streamlined sample collection and processing
- Automated DNA extraction
- High-throughput lab protocols
- Automated genotyping

Develop

- Sampling individual fish is slow
- Why not sample all fish at once?
- Take water sample from RSW tank
- eDNA and 'real-time' stock ID


The Future?

- Reliable Stock Identification
- Robust and updated baselines
- Standardised and regular sampling
- Monitoring of stock mixing
- Current and relevant data for assessments
- Fast turnaround (months not years)

How to achieve this?

- Strong collaboration
 - Industry
 - Institutes
 - Tell us what you need
- Sustained funding
- Staying up to date with new technology

Real time monitoring

