

Climate impacts on productivity of NWW fish stocks and how fisheries management can adapt

C. Tara Marshall School of Biological Sciences c.t.marshall@abdn.ac.uk

Productivity depends on five "vital rates"

Fish are ectotherms \Rightarrow vital rates will be temperature dependent

Individual growth rates are temperature-dependent

- age/length data for eight commercial species in North Sea were obtained from DATRAS (<u>http://datras.ices.dk</u>) and from Dutch market sampling and surveys (for flatfish species)
- VBGF fit on a cohort-by-cohort basis over 1970 to 2006

Baudron et al. (2014)

Individual growth rates are temperature-dependent

NWWAC virtual workshop 26 November 2020

Correlations between common trend in L_{∞} and different formulations of temperature

Time period	Correlation	p-value	α(1 + k – i) ⁻¹
0 to 2 years	-0.54	0.00064	0.010*
0 to 1 years	-0.49	0.00182	0.013*
2 years	-0.49	0.00200	0.017*
1 year	-0.45	0.00510	0.025*
0 years	-0.43	0.00640	0.050*

Baudron et al. 2014

Yield-per-recuit is temperature dependent

Species	Sub-stock	Decrease in L_{∞}	Decrease in YPR		
Haddock	North	29%	38.7%		
Whiting	ing North 13%		3.1%		
Whiting	South	29%	48.1%		
Herring	North	10%	12.3%		
Norway pout	North	19%	22.2%		
Sprat	South	16%	4.0%		
Plaice	Male South	12%	46.2%		
Sole	Male South	13%	17.8%		
Sole	Female South	1%	15.9%		
AVERAGE		16%	23%		

Baudron et al. 2014

What are the implications of smaller-sized adults for yields?

ICES	News	Events	Calendar	Library	SharePoint	login Admin	Search this site	è	0, ד
CIEM				ABOUT	ICES	SCIENCE	DATA	ADVICE	JOIN US
Expert groups Science priorities Publications									
WGGRAFY									
						Print it	Send to	y in Sha	are it
ICES/PICES Working Group on Imp	oacts o	of Wa	arming	on	4	Print it 💌	Send to f	y in Sha	are it
ICES/PICES Working Group on Imp Growth Rates and Fisheries Yields	acts ((WG(of Wa GRAF	arming Y)	on	4	Print it	Send to f	y in ^{sha}	are it
ICES/PICES Working Group on Imp Growth Rates and Fisheries Yields	oacts o (WG0	of Wa GRAF	arming Y)	on	4	Print it 💌	Send to f	y in Sha	are it

Chairs: Tara Marshall (UK, ICES) Paul Spencer (USA, PICES) Alan Baudron (UK, ICES) John Morrongiello (Australia, Guest)

https://www.ices.dk/community/groups/Pages/WGGRAFY.aspx

- .. Develop models to incorporate temperature-dependency of growth.
- 2. Analyse long-term growth patterns across multiple large marine ecosystems.
- 3. Assess the impacts of warming on past YPR and forecast trends in future yields under plausible warming scenarios.
- 4. Identify options for expanding access to global length-at-age data.

Spawning times of cod are temperature-dependent

Cod have shifted to earlier spawning times:

McQueen and Marshall 2017

- **1** week per decade in the northern North Sea
- 2.3 weeks per decade in the central North Sea
- 0.7 weeks per decade in the Irish Sea

Earlier spawning increases the temporal mismatch with larval prey

Recruitment rates of cod are temperature-dependent

As mismatch increases due to earlier spawning → recruitment rates of Irish Sea cod have decreased

Temperature-dependency of vital rates in stock assessment

current B_{MSY} and F_{MSY} are based on historical levels of productivity and will need to be adjusted for expected future levels

How can fisheries management adapt to CC? (Three ideas)

NWWAC virtual workshop 26 November 2020

Adaptation planning requires knowing species vulnerability

NWWAC virtual workshop 26 November 2020

Reference points need to be adapted to future productivity

ICES Journal of Marine Science

International Council for the Exploration of the Sea

Consell International po l'Exploration de la Mer

ICES Journal of Marine Science (2019), 76(6), 1424-1435. doi:10.1093/icesjms/fsz038

the most vulnerable stocks need to have responsive HCRs

Original Article

Responsive harvest control rules provide inherent resilience to adverse effects of climate change and scientific uncertainty

J. P. Kritzer¹*, C. Costello², T. Mangin², and S. L. Smith¹

¹Environmental Defense Fund, 18 Tremont Street, Boston, MA 02108, USA ²Bren School of Environmental Science and Management, University of California, 2400 Bren Hall, Santa Barbara, CA 93106, USA

*Corresponding author: tel: + 1 617 406 1817; fax: + 1 (0) 617 723 2999; e-mail: jkritzer@edf.org.

Seafood CF from comparable Life Cycle Assessment studies

Seafood type	Place	Fishing method	Carbon Footprint (kg CO2eq kg ⁻¹)	Source
Small pelagics	Scotland	Pelagic trawl	<mark>0.452</mark>	Sandison et al <i>in press</i>
Atlantic Mackerel	Galicia	Pelagic trawl	0.880	Iribarren et al. (2011)
Atlantic Mackerel	Galicia	Purse seine	0.610	Iribarren et al. (2011)
Atlantic Mackerel	Basque Country	Purse seine	> 0.200	Ramos et al. (2011)
Horse Mackerel	Galicia	Purse seine	0.797	Vázquez-Rowe et al. (2010)
Horse Mackerel	Galicia	Bottom trawl	2.28	Vázquez-Rowe et al. (2010)
Farmed Salmon	UK	Farmed	3.27	Pelletier et al. (2009)
Cod	Norway	Mixed	1.60	Winther et al. (2009)
Haddock	Norway	Mixed	1.75	Winther et al. (2009)
Shrimp	Senegal	Trawl	ca. 29	Ziegler et al. (2011)

Fuel burned accounts for >95% of GHG emissions

LCA component analysis for the Scottish pelagic fleet 2015-2017 showing the impact categories

NWWAC virtual workshop 26 November 2020

Summary

- temperature dependency of growth rates and spawning times have the potential for decreasing productivity as waters warm
- in response management should consider:
 - trait-based vulnerability assessments
 - responsive HCRs for the most vulnerable species
- sustainably produced fish are a climate smart protein source
 - industry and science can work together to estimate <u>how</u> smart
 - improving fuel efficiency will have the greatest impact on CF

