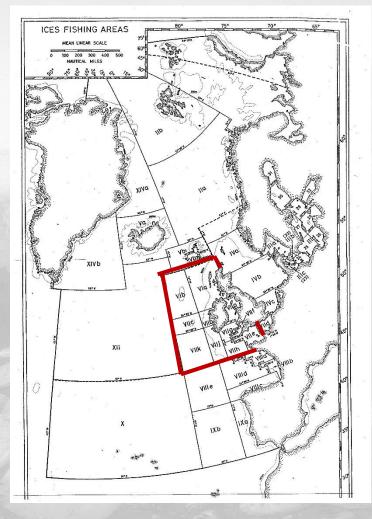
Skates in northern Europe: Status, management and future issues

Jim Ellis

November 2016 NWWAC Focus Group on Skates and Rays



Centre for Environment Fisheries & Aquaculture Science

Overview of talk

- Skates in northern Europe
- > The work of WGEF
- Status of stocks
- > Recent management
- Current issues and data gaps

Skates in northern Europe

Centre for Environment Fisheries & Aquaculture Science -

Thornback ray *Raja clavata* RJC

FR: Raie bouclée ES: Raya de clavos

Spotted ray *Raja montagui* RJM

FR: Raie douce ES: Raya pintada

> Small-eyed ray *Raja microocellata* RJE

FR: Raie mêlée ES: Raya colorada

Undulate ray *Raja undulata* RJU

FR: Raie brunette ES: Raya mosaica

Blonde ray *Raja brachyura* RJH

FR: Raie lisse ES: Raya boca de rosa

Centre for Environment Fisheries & Aquaculture Science

Genus Raja

Cuckoo ray *Leucoraja naevus* RJN

FR: Raie fleurie ES: Raya santiguesa

Shagreen ray Leucoraja fullonica RJF

FR: Raie chardon ES: Raya cardadora

Sandy ray *Leucoraja circularis* RJI

FR: Raie circulaire ES: Raya falsa vela

Centre for Environment Fisheries & Aquaculture Science

Genus Leucoraja

Common skate Dipturus batis RJB

FR: Pocheteau gris ES: Noriega Blue skate Dipturus batis

Flapper skate Dipturus intermedia

White skate *Rostroraja alba* RJA

FR: Raie blanche ES: Raya bramante

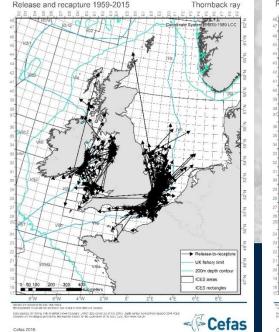
Dipturus and Rostroraja Cefas

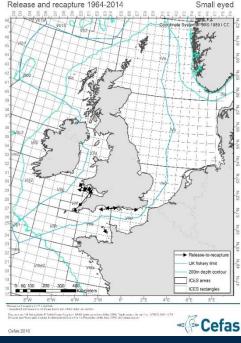
The work of WGEF

Centre for Environment Fisheries & Aquaculture Science

Assessing the stocks

- Mostly based on analyses of survey trends
 - Longest time series of species-specific information
- Some advice based on qualitative 'then v now' information
- Some stocks are too data-limited
 - o e.g. stocks on continental slope, or in very coastal waters
- > Landings data variable (catch data uncertain)
 - ICES re-examined landings data in 2016
 - ICES will examine observer data (discards etc.) in 2017
- Stock structure and other aspects of biology uncertain

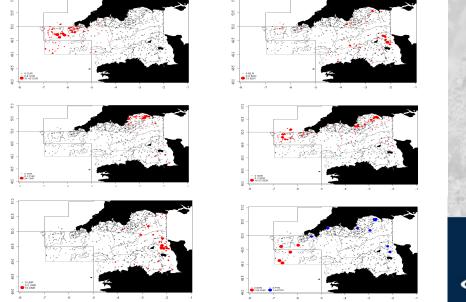

Stock structure

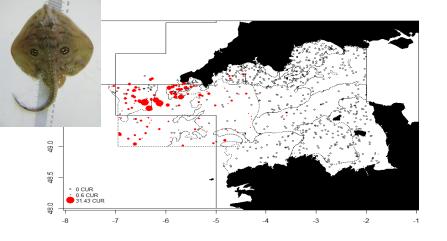

- Stock structure uncertain for many species
- > Some tagging studies, but data lacking for some parts of range
- > Few genetic studies

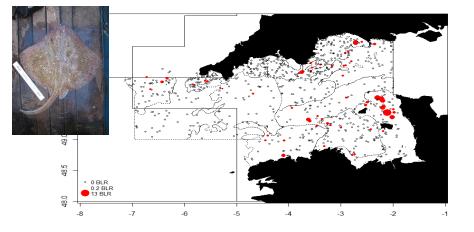
Centre for Environment Fisheries & Aquaculture

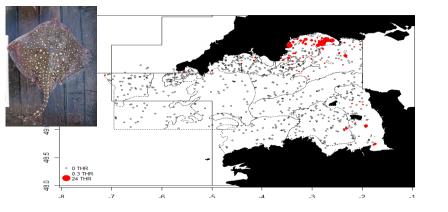
Science

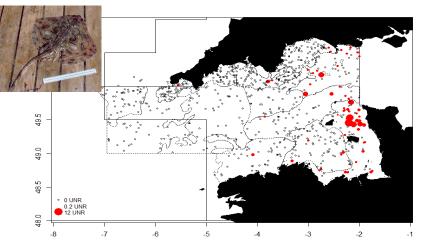
- > Some inferred 'barriers' due to unsuitable habitat
- Landings of some species from some ICES divisions not yet assigned to stocks

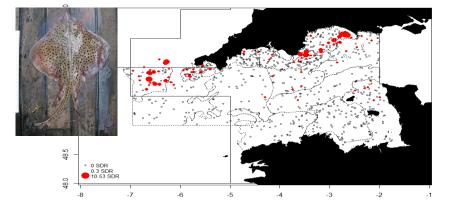


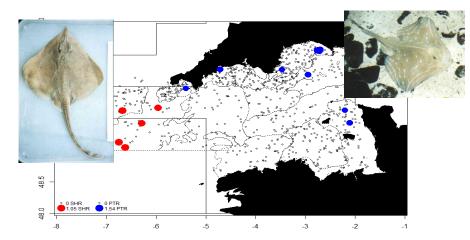

Stock structure II


- > Some regional stocks show similar spatial distributions
- English Channel contains different boundaries for various species
- Data limited (Feb-Mar; beam trawl), but indicates that Division 7.e has closer affinity to Celtic Sea for some skate species, sometimes more connectivity with 7.d






Centre for Environment Fisheries & Aquaculture Science



ICES WGEF examine 12 skate species (38 stocks)

Starry ray Amblyraja radiata in 1 management area

Common skate Dipturus batis complex in 3 management areas

Sandy ray Leucoraja circularis in 1 management area

Shagreen ray *L. fullonica* in 1 management area

Cuckoo ray *L. naevus* in 4 management/stock areas

Blonde ray *Raja brachyura* in 5 stock areas

Thornback ray *R. clavata* in 6 stock areas

Small-eyed ray *R. microocellata* in 2 stock areas

Spotted ray *R. montagui* in 5 stock areas

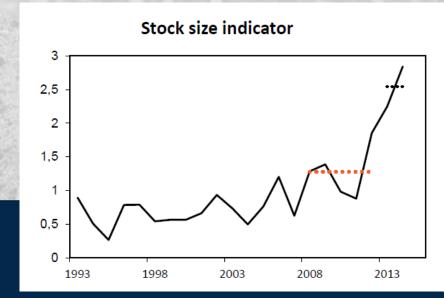
Undulate ray *R. undulata* in 5 stock areas

White skate Rostroraja alba in the Northeast Atlantic

"Other skates and rays" in 4 ecoregions

Trawl surveys

- > Variety of bottom trawl surveys (GOV, baca, beam trawl)
- > Whilst not designed specifically for elasmobranchs, they are usually the best time series of species-specific data for most demersal elasmobranchs
- Don't sample all species / sizes effectively (e.g. optimal habitat may not be surveyed; may be poor spatial overlap between survey and stock; may be low catchability in gear; limited swept area in beam trawl surveys)



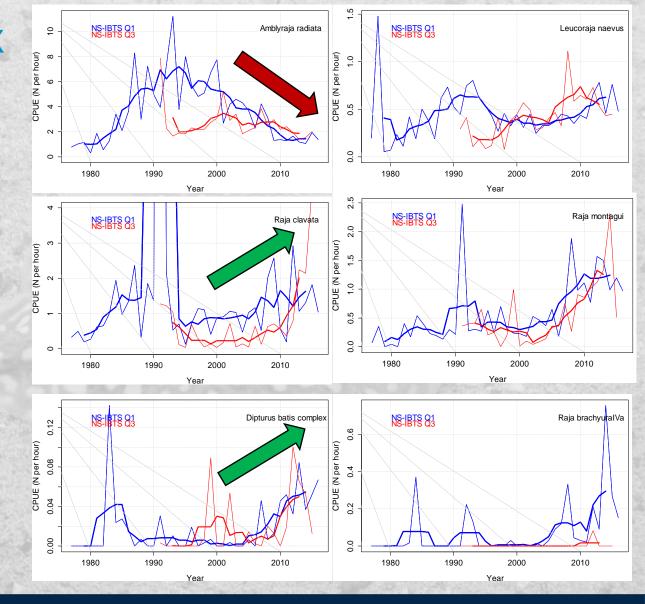
Use in ICES advice

- Data from standardised trawl surveys normalised to longterm mean. Mean of most recent 2 years compared to the mean of the preceding 5 years
- > Uncertainty cap (increases cannot be >20%)
- Precautionary buffer (–20%) applied (once) when uncertainty on whether the stock is fished sustainably
- Example: Raja
 clavata in Division
 7.d and subarea 4

Centre for Environment Fisheries & Aquaculture Science

Skate complex

ICES currently examine individual stocks


- > Over the longer-term, larger-bodied species (e.g. RJB, RJA) declined and smaller-bodied species proportionally increased
- If there is 'competition' or multispecies interactions, can all skate species increase?
- Future studies required to look at overall skate complex and species composition

Skate complex

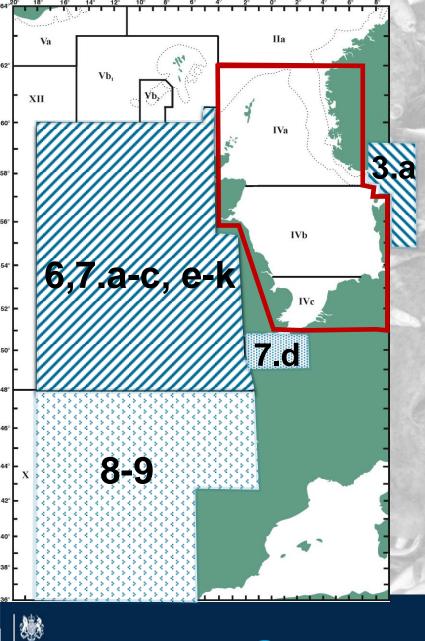
- In North Sea,
 starry ray now
 declining and
 larger species
 increasing
- > Species ID?
- Multispecies interactions?
- >Sea temperature?

See also:

Centre for Environment Fisheries & Aquaculture Science

Sguotti, C., Lynam, C. P., García-Carreras, B., Ellis, J. R. and Engelhard, G. H. (2016). The distribution of skates and sharks in the North Sea: 112 years of change. *Global Change Biology*, 22: 2729–2743.

Status of stocks


	Species	Stock Unit		Survey trend / comment
RJC	Thornback ray	6	Û	Recent 4, overall survey trend 1
		7.a.f.g	仓	Overall survey trend 1
		7.e	?	
RJM	Spotted ray	6, 7.b.j	仓	
		7.a.e-h	Û	Overall survey trend 1
RJH	Blonde ray	7.a.f.g	?	Survey data limited, possible Υ
		7.e	?	
		6, 4.a	?	Survey data limited, possible Υ
RJE	Small-eyed ray	7.d.e	?	
		7.f.g	Û	Recent ♣, overall survey trend⇔
RJU	Undulate ray	7.b.j	?	Concern over fragmented stock
		7.d.e	Û	
RJN	Cuckoo ray	6, 7, 8.a.b.d	仓	Overall survey trend⇔
RJI	Sandy ray	6, 7	?	
RJF	Shagreen ray	6, 7	?	
RJB	Common skate	(6,7)	?	Declined (locally common)
RJA	White skate	(NE Atlantic)	X	"Near extirpated"

	Species	Stock Unit	ICES ad	dvised landings for 2017
RJC	Thornback ray	6	145 t	
		7.a.f.g	1 386 t	
		7.e	212 t	
RJM	Spotted ray	6, 7.b.j	67 t	
		7.a.e-h	1 197 t	
RJH	Blonde ray	7.a.f.g	895 t	
		7.e	333 t	
		6, 4.a	6 t	Stock extends to 4.a
RJE	Small-eyed ray	7.d.e	36 t	Stock extends to 7.d
		7.f.g	154 t	
RJU	Undulate ray	7.b.j	0 t	
		7.d.e	65 t	Stock extends to 7.d
RJN	Cuckoo ray	6, 7, 8.a.b.d	2 734 t	Stock extends to Biscay
RJI	Sandy ray	6, 7	42 t	
RJF	Shagreen ray	6, 7	210 t	
RJB	Common skate	(6,7)	0 t	
RJA	White skate	(NE Atlantic)	Prohibited	

Recent managemen

Centre for Environment Fisheries & Aquaculture Science

1999: TAC for skates and rays in North Sea and EU waters of 2.a 2008: Species-specific reporting in North Sea 2009: TAC for skates and rays in other areas: 3.a 6,7.a-c.e-k; 0 7.d 0 8-9

Main skate species to be recorded separately

Centre for Environment Fisheries & Aquaculture Science **Current management**

History of TAC

			Land (Res V)	1200	the second second
Year	6,7	'.a-c, e-k			7.d
2009		15 748 t			1 044 t
2010	Û	13 387 t		Û	887 t
2011	Û	11 379 t		\Leftrightarrow	887 t
2012	Û	9 915 t		\Leftrightarrow	887 t
2013	Û	8 924 t		Û	798 t
2014	Û	8 032 t		\Leftrightarrow	798 t
2015	\Leftrightarrow	8 032 t		\Leftrightarrow	798 t
2016	\Leftrightarrow	8 032 t	-	Û	966 t

Current management and issues

> TACs for skates (at family level)

- > Within these TACs, limits on the landings of some species (e.g. RJU, RJE)
- > Prohibited species (RJB, RJA)

How to translate ICES advice to TAC, when some stocks straddle management areas?

Status quo? Stock-specific TACs? More regional skate TACs? Genus-based TACs? Spatial management? Length-based restrictions?

Centre for Environment Fisheries & Aquaculture Science

Emerging issues and data gap

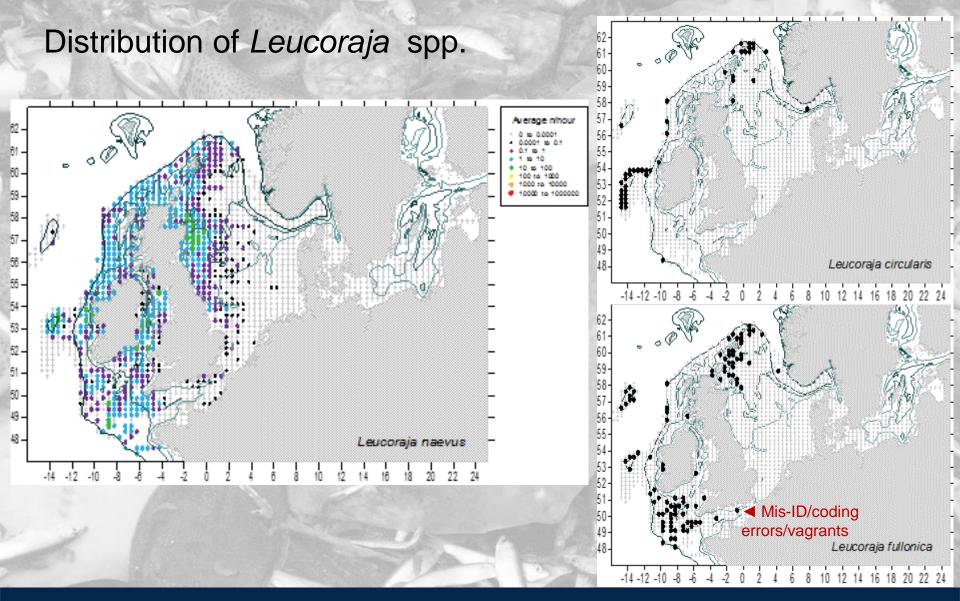
Centre for Environment Fisheries & Aquaculture Science

- > Quota management: can it be refined as part of 'regional management'
- > MSY and proxies for sustainable exploitation
- Landing obligation
- > MSFD and indicators

Regional management

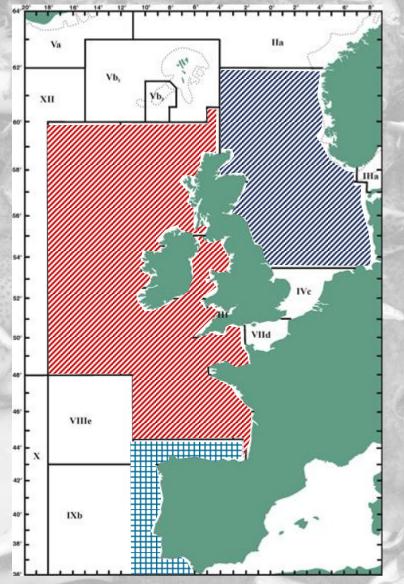
- Current TACs for skates are at Family level
- > Area of interest to NWWAC has >10 species of skate, ca. 8-10 species of commercial interest
- Important regional differences in skates assemblages, in relation to latitude and depth (*Raja* generally coastal and inner shelf, *Leucoraja* generally further offshore)
- Not just a NWWAC issue: Ensure comparable approaches to other areas (North Sea; Biscay/Iberia)?

Would Genus-based TACs be more practical?


Raja: Blonde ray (RJH), thornback ray (RJC), small-eyed ray (RJE), spotted ray (RJM) and undulate ray (RJU)

Leucoraja: Cuckoo ray (RJN), shagreen ray (RJF) and sandy ray (RJI)

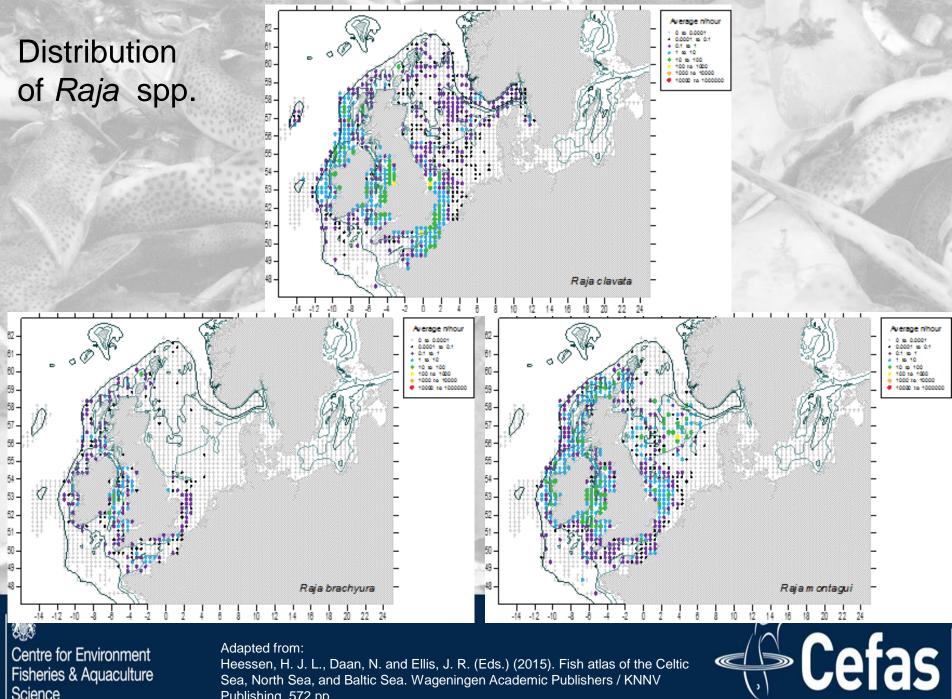
Dipturus: Common skate complex (RJB), long-nosed skate, Norwegian skate



Adapted from:

Centre for Environment Fisheries & Aquaculture Science

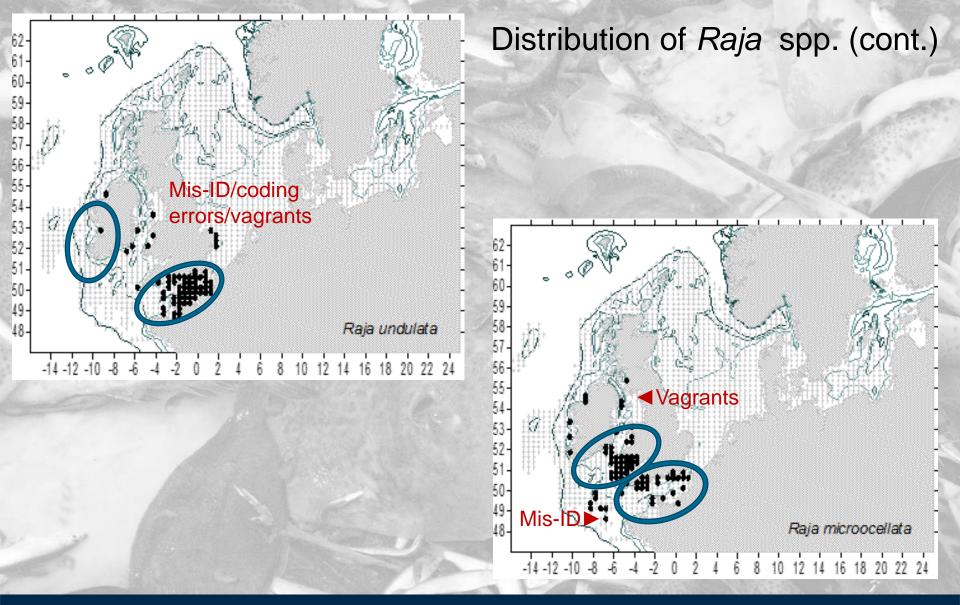
Heessen, H. J. L., Daan, N. and Ellis, J. R. (Eds.) (2015). Fish atlas of the Celtic Sea, North Sea, and Baltic Sea. Wageningen Academic Publishers / KNNV Publishing, 572 pp.


- Leucoraja spp. usually offshore, with near continuous distribution
- Possible management units of North Sea (4.a.b), Celtic Seas/Biscay (6,7.ac,e-k, 8.a.b.d.e) and Iberia (8.c, 9.a)
- Catches comprised primarily of RJN
- » RJN 'assessment' could inform on fishing opportunities

> RJF and RJI are data limited and stocks of concern. Specific measures (e.g. maximum size, trip limits) could afford some degree of protection to these species

Centre for Environment Fisheries & Aquaculture Science

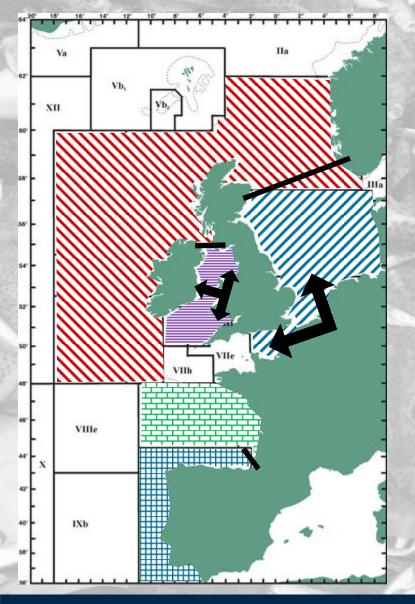
Example only



Centre for Environment Fisheries & Aquaculture Science

Adapted from:

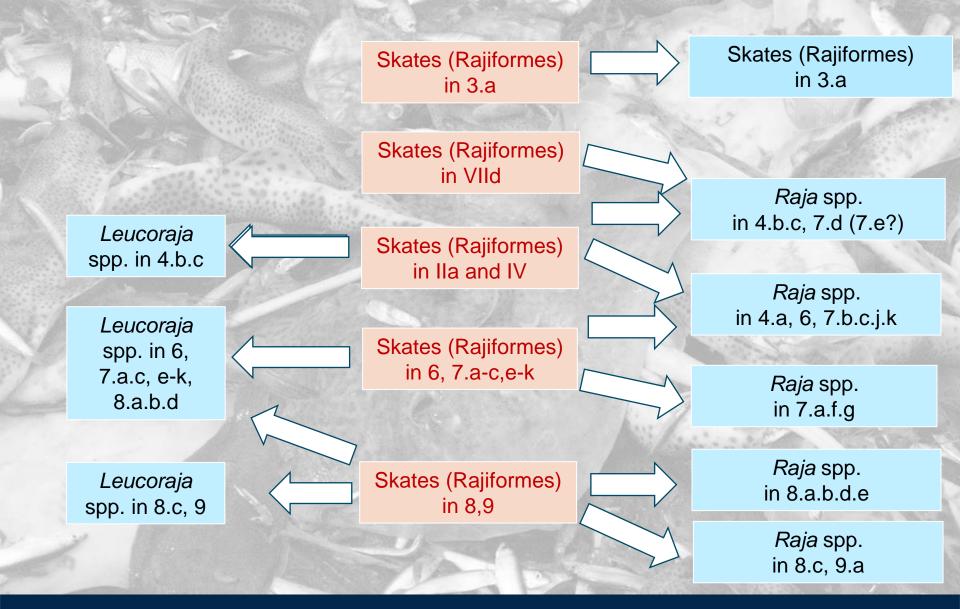
Heessen, H. J. L., Daan, N. and Ellis, J. R. (Eds.) (2015). Fish atlas of the Celtic Sea, North Sea, and Baltic Sea. Wageningen Academic Publishers / KNNV Publishing, 572 pp.



Centre for Environment Fisheries & Aquaculture Science

Adapted from:

Heessen, H. J. L., Daan, N. and Ellis, J. R. (Eds.) (2015). Fish atlas of the Celtic Sea, North Sea, and Baltic Sea. Wageningen Academic Publishers / KNNV Publishing, 572 pp.



- Raja spp. inshore (RJC, RJH), but do extend offshore (RJM) distribution
- North Sea appears to have a split in distributions (at least in recent data)
- Combined 4.b.c-7.d consistent with available tagging data. Extending to 7.e?
- Known connectivity within 7.a.f.g
- North Channel assumed a boundary
- Deep-water between Biscay and Cantabrian shelves assumed a boundary
- *ca.* 5 nominal management units for *Raja* spp.

Example only

«Cefas

Centre for Environment Fisheries & Aquaculture Science

Example only

- Currently TACs for Rajiformes in five management areas
- More than 30 stocks: individual TACs could be complicated, especially as they can be taken in 'mixed skate' fisheries
- > Is more regional, genus-based management an intermediate solution?
- Should allow a clearer link between 'ICES stock advice' and TACs
- Could allow other management measures to be better targeted to specific, regional issues
- ? Would it get support from industry and other bodies?
- ? Potential issues of 'relative stability'
- ? Needs scientific consensus for best delineation of units
- ? Would it increase data needs for derogations from landing obligation

Length-based proxies

Length-based parameters usually available
 Annual length-frequency data usually available (market sampling, surveys, observer programmes)

- Potential for indicators, reference points and indicator ratios to be calculated (length-based screening)
- Length-based proxies for state of immature and mature parts of stock as well as MSY
- Trialled by ICES WKLIFE for Nephrops and some teleosts
 Exploratory studies for elasmobranchs in 2017

Length-based parameters

Term	Description	Thornback ray	Cuckoo ray
L _{birth}	Length at birth or hatching	10 cm	10 cm
L _{mat}	Length at 50% maturity	76.6 cm	59.8 cm (F)
L _{max}	Maximum length observed	115 cm (130 cm)	72 cm
L _{inf}	Von Bertalanffy growth parameter	107-139 cm	74.6 cm (M) 83.9 cm (F)
L _c	Length at 'first capture'	-	-
L _{Opt}	2/3 L _{Inf}	-	-

- L_{birth}, L_{max} and L_{mat} usually known
- Published estimates of L_{inf} variable quality
- > L_c needs to be defined more explicitly (fleet specific?)

Centre for Environment Fisheries & Aquaculture Science

McCully, S. R., Scott F. and Ellis J. R. (2012). Length at maturity and conversion factors for skates (Rajidae) around the British Isles, with a critique of earlier studies. *ICES Journal of Marine Science*, 69: 1812–1822.

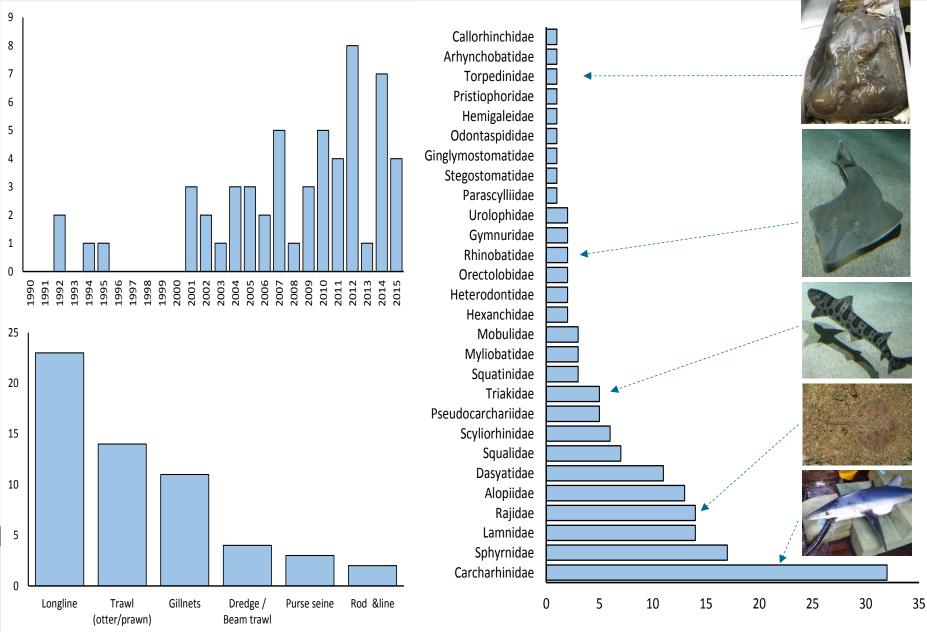
Length-based indicators

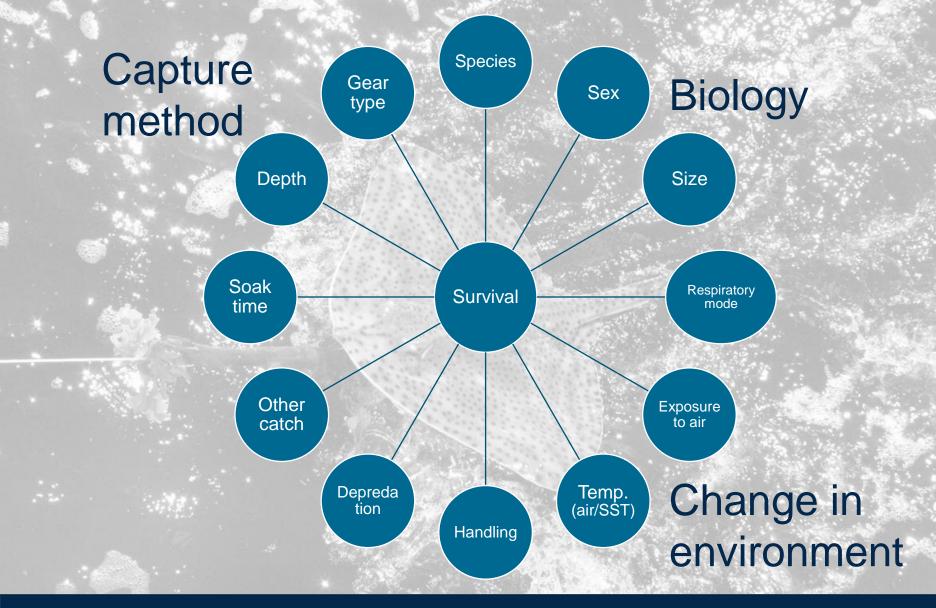
Indicator	Calculation	Indicator ratio	Expected value
L _{Max5%}	Mean length of largest 5%	$L_{Max5\%}$ / L_{inf}	> 0.8
L _{95%}	95 th percentile	L $_{95\%}$ / L $_{\rm inf}$	> 0.8
P _{Mega}	Proportion of ind. > L_{Opt} + 10%	-	> 0.3
L _{25%}	25 th percentile	L _{25%} / L _{mat}	> 1.0
L _C	Length at 'first capture'	L _C /L _{mat}	> 1.0
L _{Mean}	Mean length of ind. > L $_{\rm C}$	L _{Mean} / LF=M	≥ 1.0
		(where LF = M = (0.75.L _C +0.25L _{inf})	

ICES. 2015. Report of the Fifth Workshop on the Development of Quantitative Assessment Methodologies based on Life-history Traits, Exploitation Characteristics and other Relevant Parameters for Data-limited Stocks (WKLIFE V), 5–9 October 2015, Lisbon, Portugal. ICES CM 2015/ACOM:56; 157 pp.

Landing obligation

- Affects all quota species, except for 'prohibited species', catches falling under *de minimis* exemptions and species with high survival
- Mortality includes 'At-vessel mortality' (proportion of the catch that is dead when the gear is brought aboard) and 'post-release mortality' (proportion of fish discarded 'alive' that die due to injuries sustained or physical impairment, including predation by scavengers)
- Data on discard survival will be required for skates and spurdog




Centre for Environment Fisheries & Aquaculture Science

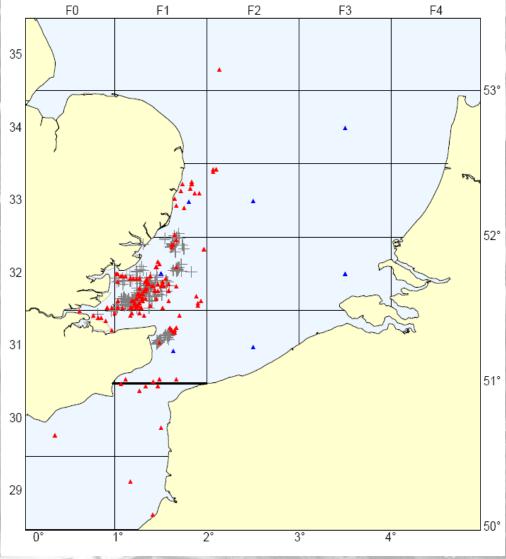
Ellis, J. R., McCully Phillips, S. R. & Poisson, F. (In press). A review of capture mortality of elasmobranch fish. *Journal of Fish Biology*

Published studies and grey literature

At-vessel mortality may be low: Thornback ray in the southern North Sea

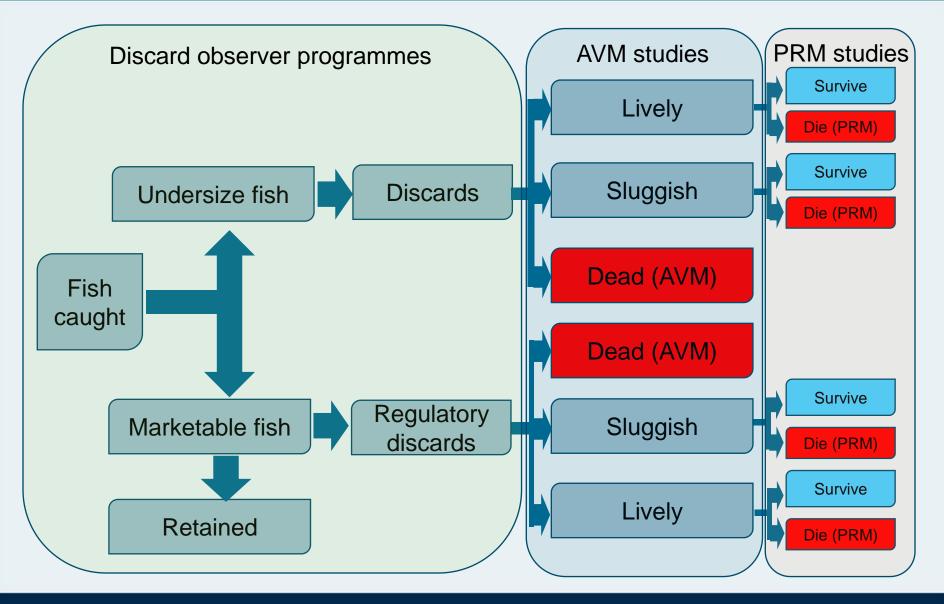
Magaal	Gear	Lively		Sluggish		Dead	
Vessel		No.	%	No.	%	No.	%
Vessel A	Trawl	591	63.1	323	34.5	22	2.4
Vessel B	Trawl	1 608	91.3	152	8.6	1	0.1
Vessel C	Trawl	1 122	99.7	3	0.3		
Vessel C	Longline	104	94.5	6	5.5		
Vessel D	Longline	690	97.6	17	2.4		
Vessel D	Gillnet	388	73.2	142	26.8		
Vessel E	Gillnet	436	98.0			9	2.0

Return rates of tagged fish of similar magnitude to earlier tagging studies


Vessel	Gear	Released	Recaptured			
100001	CCUI	(No.)	No.	%		
Vessel A	Twin-rig trawl	517	124	24.0		
Vessel B	Triple-rig trawl	1304	168	12.9		
Vessel C	Twin-rig trawl	660	102	15.5		
Vessel C	Longline	110	27	24.5		
Vessel D	Longline	649	145	22.3		
Vessel D	Gillnet	479	119	24.8		
Vessel E	Gillnet	433	41	9.5		

- Earlier studies tagging skates in this area with Petersen discs reported return rates of 21-28% (Walker et al., 1997)
- Skates can survive, but survival not quantified

Centre for Environment Fisheries & Aquaculture Science Walker, P., Howlett, G. and Millner, R. (1997) Distribution, movement and stock structure of three ray species in the North Sea and eastern English Channel. *ICES Journal of Marine Science* **54**: 797–808. Ellis, J. R., Burt, G. J., Cox, L. P. N., Kulka, D. W, and Payne, A. I. L. (2008). The status and management of thornback ray *Raja clavata* in the south-western North Sea. ICES CM 2008/K:13, 45 pp.


Low at-vessel mortality of skates in inshore Channel fisheries

Gear	Species	Lively		Sluggish		Dead	
		No.	%	No.	%	No.	%
Set nets	R. clavata	161	59.6	102	37.8	7	2.6
	R. montagui	31	67.4	12	26.1	3	6.5
	R. undulata	42	93.3	3	6.7	0	0.0
	Total Rajidae	238	64.5	121	32.8	10	2.7
Longline	R. brachyura	10	62.5	6	37.5	0	0.0
Ĵ	R. undulata	6	100.0	0	0.0	0	0.0
	Total Rajidae	16	72.7	6	27.3	0	0.0
Trawl	R. brachyura	37	20.3	144	79.1	1	0.5
	R. undulata	65	48.5	68	50.7	1	0.7
	Total Rajidae	104	32.3	216	67.1	2	0.6

Centre for Environment Fisheries & Aquaculture Science

BUT WHAT PROPORTION SURVIVE DISCARDING?

Centre for Environment Fisheries & Aquaculture Science

Silva, J. F., Ellis, J. R. and Catchpole, T.L. (2012). Species composition of skates (Rajidae) in commercial fisheries around the British Isles, and their discarding patterns. *Journal of Fish Biology*, 80: 1678–1703.

Data and knowledge gaps

- Improved time series for status of blonde ray (RJH)
- Improved time series for offshore species (RJI, RJF) and coastal species (RJE)
- > Improved delineation of stocks and degree of mixing
- Need to achieve F_{MSY} targets by 2020: proxies to be developed, e.g. length-based methods
- Improved estimates of catch (analyses of discards data)
- Discard survival
- > Improved delineation of any 'critical habitat'

