EFFECTS OF MICROPLASTICS ON HUMAN HEALTH

MAC & NWWAC WORKSHOP ON MARINE PLASTICS AND THE SEAFOOD SUPPLY CHAIN INTERPRETATION DIRECTORATE (SCIC), RUE DE LA LOI 102, BRUSSELS 7TH NOVEMBER, 2019

Brian Quinn, PhD, FSRB, FHEA

Professor of Ecotoxicology

Institute of Biomedical & Environmental Health Research (IBEHR), School of Health & Life Sciences, University of the West of Scotland, Paisley, Scotland. Email: brian.guinn@uws.ac.uk

UNIVERSITY OF THE Institute of Biomedical & Environmental Health Research (IBEHR)

My Microplastics Research

My Microplastics Research

Croutflick

benthic invertebrates in the Rockall Trough, North Atlantic Ocean⁴⁶ Winnie Courtene-Jones^{4,4}, Brian Quinn¹⁶, Stefan F. Gary⁴, Andrew O.M. Mogg⁴, Bhavani E. Narayanaswamy⁴

Microplastic pollution identified in deep-sea water and ingested by

pubs.acs.org/est

Article

Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment

Fionn Murphy,**[†] Ciaran Ewins,[‡] Frederic Carbonnier,[§] and Brian Quinn[†]

Contents lists available at ScienceDirect Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

Current Opinion in Environmental Science & Health Volume 7, February 2019, Pages 69-75

The effects of microplastic on freshwater *Hydra attenuata* feeding, morphology & reproduction*

Fionn Murphy*, Brian Quinn

Microplastics in drinking water: A review and assessment

Dafne Eerkes-Medrano ¹ 𝔅 🖾, Heather A. Leslie ², Brian Quinn ³

Routes of human exposure to microplastics

- 1. Ingestion:
- Food

- Water
- 2. Inhalation: Air

Microplastics in food: Ingestion

ADOPTED: 11 May 2016 doi: 10.2903/j.efsa.2016.4501

Presence of microplastics and nanoplastics in food, with particular focus on seafood

EFSA Panel on Contaminants in the Food Chain (CONTAM)

seafish

EFSA Journal

Update on the sources, fate, effects and consequences for the Seafood Industry of microplastics in the marine environment

Microplastics in food: Ingestion

Species	Location	Av No. MP / g Particle type		Reference
		soft tissue		
M. edulis	Germany	0.36 (±0.07)	Fragments,	Van Cauwenberghe
	(Aquaculture)		spheroids	& Janssen, 2014
C. Gigas	Germany	0.47 (±0.16)	Fragments,	Van Cauwenberghe
	(Aquaculture)		spheroids	& Janssen, 2014
9 different	China (market bought)	4.0 (±2.1-10.5)	Fragments,	Li et al., 2015
species			fibres, pellets	
V. philippinarum	Canada (aquaculture)	1.13 (±0.66)	Fibres, film,	Davidson & Dudas,
			fragments	2016
M. edulis	Belgium	0.24	Fibres,	De Witte et al., 2014
C. aiaas	Belgium	0.35	fragments	
M. edulis	Scotland: Oban (wild)	1.05 (±0.66) –	Fibre, film,	Courtene-Jones et
		4.44 (±3.03)	fragments,	al., 2016
			beads	
Mytilus spp.	Industrial Estuary	0.74 (±0.125)	Fibres	Catarino et al., 2018
	Scotland			
Mytilus spp.	Scotland: Various	3.0 (± 0.9)	Fibres	Catarino et al., 2018
	(wild)			

Food type	Location	AV NO AV NO		Particle type	Kelerenc	
		MP/KG	MP/g		е	\$ 30 PA
Honey*	Germany	166 ±	0.166 ± 147	Fibres,	Liebezeit	ELSEVIER
		147		Fragments	et al.,	
Sugar*	Germany	249 ±	0.249 ±	Fibres,	2013.	Micro
		130	130	Fragments		huma
Sea salt	China	550-	0.55-0.681	Fragments,	Yang et	Diogo Peixot
		681		fibres, pellets	al., 2015	Vieira ^{a, b}
Lake salt	China	43-364	0.043-	Fragments,		
			0.364	fibres, pellets		
Rock/well salt	China	7-204	0.07-0.204	Fragments,		
				fibres, pellets		
Salt	Internation	1-10	0.001-0.01	Fragments,	Karami et	
	al			filaments,	al., 2017	
				films		

Estuarine, Coastal and Shelf Science Volume 219, 5 April 2019, Pages 161-168

UNIVERSITY OF THE WEST of SCOTLAND

Microplastic pollution in commercial salt for human consumption: A review

Diogo Peixoto ^a R 🛱, Carlos Pinheiro ^a, João Amorim ^a, Luís Oliva-Teles ^a, ^b, Lúcia Guilhermino ^{a, c}, Maria Natividade Vieira ^{a, b}

Microplastics in Water: Ingestion

			Water Research 141 (2018) 307-316		
	RESEARCH ARTICLE Anthropogenic contamination of tap water,	ELSEVIER	Contents lists available at ScienceDirect Water Research journal homepage: www.elsevier.com/locate/watres	WATER RESEARCH	
	 beer, and sea salt Mary Kosuth¹**, Sherri A. Mason²*, Elizabeth V. Wattenberg¹* 1 University of Minnesota, School of Public Health, Division of Environmental Health Sciences, Minneapolis, Minnesota, United States of America, 2 State University of New York at Fredonia, Department of Chemistry and Biochemistry, Fredonia, New York, United States of America 	Small-sized microplastics and pigmented particles in bottled mineral water Barbara E. Oßmann ^{a, b, *} , George Sarau ^{c, d} , Heinrich Holtmannspötter ^{a, 1} , Monika Pischetsrieder ^b , Silke H. Christiansen ^{c, d, c} , Wilhelm Dicke ^{a, **}			
ELSEVIER	Science of the Total Environment 648 (2019) 631-635 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv	EL SEVIEI	Water Research 129 (2018) 154-162 Contents lists available at ScienceDirect Water Research journal homepage: www.elsevier.com/locate/watres	WATER WATER RESEARCH	
Low numbers of micr water sources Mintenig S.M. *. ¹ , Löder M.C Afred-Wegener-Institut, Helmboltz-Zentrum fü	C.J. ² , Primpke S., Gerdts G.	Analysis Release water Darena Sch	of microplastics in water by micro-Raman spectroscopy: of plastic particles from different packaging into mineral ymanski ^{a, b} , Christophe Goldbeck ^a , Hans-Ulrich Humpf ^b , Peter Fürst ^{a, *}	CrossMark	
 HIGHLIGHTS Identification of microplastics >20 µ using FTIR imaging. Examination of 40 m³ ground water an drinking water for microplastics Negligible microplastic contaminatio of drinking water (~1 particle m⁻³). 	GRAPHICAL ABSTRACT		UNIVERSITY (WFST of SCO	DETHE	
			ŪŴ	\overline{S}	

Microplastics in Water: Ingestion

Current Opinion in Environmental Science & Health Volume 7, February 2019, Pages 69-75

Microplastics in drinking water: A review and assessment

Dafne Eerkes-Medrano ¹ 𝔅 🖾, Heather A. Leslie ², Brian Quinn ³

Reference	Type of DW measured	Volumes	Min & max values;	Size range	Type of	Composition	
	(number of samples)	collected per	mean concentration	of particles	particles	of particles	
		sample					
*Kosuth et al.	Tap water (n=156),	500ml	0 to 60.9 particles/L;	0.10-	Fibres,	NA	
2018	Bottled water (n=3)		5.45 particles/L	5.00mm,	fragments,		
				(Av.0.96mm	films		
		1.00)			
Mintenig et	Raw water at DWTP inlet	300-1000L	0 to 7 particles/m3; 0.7	50-150μm	fragments,	PEST, PVC,	
al. 2018	(n=6), DW at <u>DWTP outlet</u>	raw water,	particles/m3 (14 of the		fibers were	РА, ероху,	
	(n=5), DW at household water	1200-2500L	24 samples had no MP		suspected as	and PE.	
	meter (n=5) and <u>water tap</u>	DW	detected)		contaminatio		
	(n=5), well ground water (n=3)				n		
Oßmann et al.	Mineral water packaged in	250ml of	0 to 16634 particles/L;	1 μm to	NA	PET, PET, PE,	
2018	PET reusable <u>bottles</u> (n=12),	initial sample	mean	>10µm[sep]		РР	
	single use PET bottles (n=10),	volume	3633.26±3860.96				
	reusable glass bottles (n=9),		particles/L.				
	single use glass bottle (n=1)						
Schymanski et	Returnable plastic bottles	700-1500ml	2 to 241 particles/L;	5 μm to	fragments	PET, PEST, PE,	
al. 2018	(n=15), single-use plastic		particles per L in single-	>100 µm;		PP, PA, others	
	bottles (n=11), glass bottles		use plastic bottles				F
	(n=9)		(14±14), returnable				WES
		10.0	plastic bottles				I
			(118±88), glass bottles				C
			(50±52)				

* Kosuth et al. 2018 reported "anthropogenic particles" as FTIR was not applied to identify particle composition

Microplastics in air: Inhalation

Environmental Pollution 221 (2017) 453-458

A first overview of textile fibers, including microplastics, in indoor and outdoor environments*

CrossMark

POLLUTION

Rachid Dris ^{a, *}, Johnny Gasperi ^{a, **}, Cécile Mirande ^a, Corinne Mandin ^b, Mohamed Guerrouache ^c, Valérie Langlois ^c, Bruno Tassin ^a

- Indoor concentrations between 1.0 and 60.0 fibers/m³
- 33% fibers contain petrochemicals with polypropylene being predominant
- There is currently no available data or information which provides evidence of the potential human health effects of ingested or inhaled microplastics.

Microplastics in air: Inhalation

Environmental Pollution 237 (2018) 675-684

Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal*

Ana I. Catarino ^{a.*}, Valeria Macchia ^b, William G. Sanderson ^{a. c}, Richard C. Thompson ^d, Theodore B. Henry ^{a. e}

'Concerns of human to MPs via shellfish ingestion need to be placed into context, since their potential for ingestion is minimal when compared to exposure to MPs via household dust fallout'.

> UNIVERSITY OF THE WEST of SCOTLAND

Microplastic Consumption

Human Consumption of Microplastics

Kieran D. Cox,*^{1,‡}[©] Garth A. Covernton,[†] Hailey L. Davies,[†] John F. Dower,[†] Francis Juanes,[†] and Sarah E. Dudas^{†,‡,§}

> Based on caloric intake, estimate that annual MP consumption ~39,000 to 52,000 particles depending on age and sex, increasing to 74,000 and 121,000 when inhalation is considered.

Article pubs.acs.org/est

• Recommended water intake through only bottled sources ingesting an additional 90,000 MPs annually, compared to 4,000 MPs for tap water only.

AUTHOR INFO

PACP

Annals of Internal Medicine[®]

LATEST ISSUES CHANNELS CME/MOC IN THE CLINIC JOURNAL CLUB WEB EXCLUSIVES

THIS ISSUE | NEXT ARTICLE> ORIGINAL RESEARCH | 1 OCTOBER 2019

Detection of Various Microplastics in Human Stool: A Prospective Case Series

Philipp Schwabl, MD; Sebastian Köppel, Dipl–Ing(FH); Philipp Königshofer, DVM; Theresa Bucsics, MD; Michael Trauner, MD; Thomas Reiberger, MD; Bettina Llebmann, PhD

Potential impact of Microplastics on humans

- How to define impact?
- At what level do we assess impact?
- Potential impacts:
 - 1. Particle toxicity hazard

- 2. Exposure to micromolecules sorbed to MP
- MP physical & chemical characteristics will influence toxicological risk

Environ. Sci. Technol., 2017, 51 (12), pp 6634–6647

Critical Review

pubs.acs.org/est

Plastic and Human Health: A Micro Issue? Stephanie L. Wright*** and Frank J. Kelly*

- <u>Could</u> lead to a suite of biological responses; inflammation, genotoxicity, oxidative stress, apoptosis & necrosis.
- <u>Potentially</u> leading to tissue damage, fibrosis and carcinogenesis.
- <u>Evidence</u> is provided by wear debris from plastic prosthetic implants.
- PE particles (0.5–50 μ m) provoke a non-immunological foreign body response
- PE particles transportation via the perivascular lymph spaces occurs

Science of the Total Environment 684 (2019) 657-669

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

An assessment of the toxicity of polypropylene microplastics in human derived cells

Jangsun Hwang a,b, Daheui Choi a, Seora Han a, Jonghoon Choi b,a, Jinkee Hong a,a

- PP particles showed low cytotoxicity effect in size and concentration manner
- However, a <u>high concentration</u>, small sized, DMSO method of PP particles stimulated the immune system and enhanced potential hypersensitivity to PP particles via an increase in the levels of cytokines and histamines in PBMCs, Raw 264.7 and HMC-1 cells.

Environmental Pollution 234 (2018) 115-126

Contents lists available at ScienceDirect

Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

Uback for

Airborne microplastics: Consequences to human health?*

Joana Correia Prata

University Fernando Pessoa, Fernando Pessoa Energy, Environment and Health Research Unit (FP ENAS), Praça 9 de Abril, 349, Porto, Portugal

Science of The Total Environment Available online 4 October 2019, 134455 In Press, Journal Pre-proof (?)

Review

Environmental exposure to microplastics: an overview on possible human health effects

Joana Correia Prata 🌯 🛱, João P. da Costa 🏁, Isabel Lopes 🏁, Armando C. Duarte 🏁, Teresa Rocha-Santos 🏁

- •Under conditions of <u>high concentration</u> or <u>high individual</u> <u>susceptibility</u>, microplastics **may** cause inflammatory lesions.
- •However, **knowledge** on the effects of environmental exposure to microplastics on human health **is limited**, leading to high uncertainties that **should not be translated in alarmism** even when applying the precautionary principle.

Science of the Total Environment 667 (2019) 94-100

Contents lists available at ScienceDirect Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health

Liang Lu, Ting Luo, Yao Zhao, Chunhui Cai, Zhengwei Fu, Yuanxiang Jin *

- •Microplastics **could** interact with microorganisms as well as gut microbiota.
- •Microplastics **may** affect host health through effects on gut microbiota.
- •Effects of microplastics on gut microbiota **need more attention**.

Exposure of micromolecules via microplastics

Exposure assessment using bivalves

Compound	Highest concentration in microplastics (see section 5.6) (ng/g)	t concentration nicroplastics section 5.6) (ng/g) Calculated intake from microplastics (pg/kg bw/day) Total intake from the diet (pg/kg bw/day)		Ratio intake microplastic/total dietary intake (%)	
Contaminants					
Non-dioxin like PCBs	2 970	0.3			
EFSA, 2012			4 300°	0.007	
JECFA, 2016			1 000°	0.03	
PAHs	44 800	4.5			
EFSA, 2008			28 800 ^b	0.02	
JECFA, 2006			4 000 ^c	0.1	
DDT	2 100	0.2			
EFSA, 2006			5 000 ^d	0.004	
JECFA, 1960			100 000 000	0.0000002	
Additives/monomers					
Bisphenol A	200	0.02			
EFSA, 2015a	-		130 000"	0.00002	
FAO/WHO, 2011			400 000 ^r	0.000005	
PBDEs	50	0.005			
EFSA, 2011			7009	0.0007	
JECFA, 2006			185 ^h	0.003	
NP	2 500	0.3	NA		
OP	50	0.005	NA		

UNIVERSITY OF THE

Note: EFSA (European Food Safety Authority), JECFA (Joint (FAO/WHO) Expert Committee on Food Additives, FAO (Food and Agriculture Organization of the United Nations), WHO (World Health Organisation), PCBs (Polychlorinated biphenyls), PAHs (Polycyclic aromatic hydrocarbons), DDT (Dichlorodiphenyltrichloroethane), PBDEs (Polybrominated diphenyl ethers), NP (Nonylphenol), OP (Octylphenol).

Exposure of micromolecules via microplastics

Current Opinion in Environmental Science & Health Available online 11 December 2018 In Press, Corrected Proof (1)

Microplastics in drinking water: A review and assessment

Dafne Eerkes-Medrano 1 & III, Heather A. Leslie 2, Brian Quinn 3

Compound	Highest concentration in MP (ng/g)	Calculated intake from treated water (pg/kg bw/day)	Calculated intake from tap water (pg/kg bw/day)	Calculated intake from bottled water (pg/kg bw/day)	Total intake from diet (pg/kg bw/day)	Ratio intake treated water MP/total dietary intake (%)	Ratio intake tap water MP/total dietary intake (%)	Ratio intake bottle water MP/total dietary intake (%)
Contaminants								
Non-dioxin like PCBs	2970	0.0026136	12.2364	0.0594				
EFSA, 2012					4300	6.08E-05	0.28	1.38E-03
JECFA, 2016					1000	2.61E-04	1.22	5.94E-03
PAHs	44800	0.039424	184.576	0.896				
ESFA, 2008			1.2.2.4		28800	1.37E-04	0.64	3.11E-03
JECFA, 2006					4000	9.86E-04	4.61	0.02
DDT	2100	0.001848	8.652	0.042				
EFSA, 2006					5000	3.70E-05	0.17	8.40E-04
JECFA, 1960					10000000	1.85E-09	8.65E-06	4.20E-08
Additives	100							
Bisphenol A	200	0.000176	0.824	0.004				
EFSA, 2015a					130000	1.35E-07	6.34E-04	3.08E-06
FAO/WHO, 2011					400000	4.40E-08	2.06E-04	1.00E-06
PBDEs	50	0.000044	0.206	0.001				
EFSA, 2011					700	6.29E-06	0.03	1.43E-04
JECFA, 2006					185	2.38E-05	0.11	5.41E-04

MP concentrations in DW would contribute a small fraction (8.6x10⁻⁶ to 4.6 % for tap water and 4.2x10⁻⁸ to 0.02 % for bottled water respectively) of the total dietary intake of environmental contaminants and additives.

Microplastic impact on humans?

Science of the Total Environment 626 (2018) 720-726

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

A critical perspective on early communications concerning human health aspects of microplastics

Sinja Rist^a, Bethanie Carney Almroth^b, Nanna B. Hartmann^a, Therese M. Karlsson^{C,*}

* Technical University of Dermark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs, Lyngby, Denmark

¹⁰ University of Gothenburg, Department of Biological and Environmental Sciences, Medicinaregatan 18A, 41390 Göteborg, Sweden ¹¹ University of Gothenburg, Department of Marine Sciences, Kristineberg, Marine Resourch Station, 45178 Hskebäckski, Sweden

- There is a **big discrepancy between the magnitude of this debate and actual scientific findings**, which have merely shown the presence of microplastics in certain products.
- Microplastics from food products and beverages likely only constitute a minor exposure pathway for plastic particles and associated chemicals to humans.
- But as this is **rarely put into perspective**, the recent debate has created a **skewed picture of human plastic exposure**.

Microplastic impact on humans?

J Food Sci Technol https://doi.org/10.1007/s13197-019-04138-1

Published online: 19 October 2019

Microplastics: an emerging threat to food security and human health

Gabriel Enrique De-la-Torre¹

Conclusion and future research

Microplastic pollution in marine environments pose a risk to food security and human health. Research has proven the presence of microplastics in seafood and foodstuff around the world, meaning we are always exposed to microplastic ingestion. Nonetheless, little is known about its direct effects on human health. Future research should focus on microplastic monitoring techniques along the supply chain. There is a lack of information on the extent to which food security is affected by microplastic presence. Finally, plastic waste management must be improved, along with microplastic legislation.

Microplastic impact on humans?

VKM concludes that the **available information does not provide sufficient basis to characterize potential toxicity in humans.**

VKM:Report 2019; 15

Vitenskapskemiteen for mat or milio

Microplastics; occurrence, levels and implications for environment and human health related to food

Opinion of the Steering Committee of the Norwegian Scientific Committee for Food and Environment

Microplastic and human health: Risk assessment

