Comparisons of landings to scientific advice indicate overshooting within the common TAC for skates and rays in the Northeast Atlantic

Joint NWWAC/NSAC workshop on Skates & Rays Management

02 September 2025

Katinka Bleeker

Lvsekil, Sweden

Build upon work done in STECF 2022 Skates & Rays Management

Comparisons of landings to scientific advice indicate overshooting within the common TAC for skates and rays in the Northeast Atlantic

Exploitation of fish stocks generally managed on a single-stock or multiple-stock basis

Jurgen Batsleer 🏮 1,*, Christopher A. Griffiths 📭, Katinka Bleeker 📭, Graham Johnston 3, Massimiliano Cardinale 02, Pascal Lorance 04 1 Wageningen Marine Research, Wageningen University and Research, PO Box 68, 1970 AB IJmuiden, The Netherlands ²Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, SE-453 30

Marine Institute, Rinville, Oranmore, Galway H91 R673, Ireland ⁴DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro—Agrocampus Ouest, 44311 Nantes, France

*Corresponding author, Wageningen Marine Research, Wageningen University and Research, 1970 AB IJmuiden, The Netherlands. E-mail:

 Common TAC for stocks with shared characteristics, non-target and/or data-poor species

- Since 1999 common TAC of skates & rays in the North Sea
- Since 2009 in 5 regions: Celtic Seas (SRX/67AKXD), Bay of Biscay and Iberian coast (SRX/89-c), Greater North Sea: ICES division 3.a (SRX/03A-C), ICES division 2.a and Subarea 4 (SRX2AC4-c) and ICES division 7.d (SRX/07D).

Expectation of common TAC

When using a common TAC there is an explicit expectation that exploitation rates should approximately scale with stock status and

C:					
TIS	heri	ıes	ad	V	ıce

1101101100			
	Species A	Species B	80-
Advice	1000 t	100 t	60 -
Catch	~90%	~10%	40-
			20-
			0

We explored if this expectation is met and evidence instances of landings either <u>overshooting</u> or <u>undershooting</u> single-stock advice

Input data

- Primary data sources: 2016-2022
 - ICES estimated landings data
 - ICES scientific advice
 - Annual common TAC values

Species:	Skates and rays Rajiformes		Zone: Union and United Kingdom waters of 4: United Kingdom waters of 2a (SKZ)26C4-()
Belgium	271	(1)(2)(3)(4)	Precautionary TAC
Denmark	11	(1)(2)(3)	
Germany	13	(1)(2)(3)	
France	43	(1)(2)(3)(4)	
Netherlands	232	(1)(2)(3)(4)	Cuckoo ray (Leucoraja naevus) in Subarea 4 and Division 3.a (North Sea, Skagerrak, and Kattegat)
Union	570	(1)(7)	ICES advice on fishing opportunities
United Kingdom	1 19-	(1)(2)(3)(4)	ICES advises that when the precautionary approach is applied, catches should be no more than 89 tonnes in each of years 2022 and 2023.
TAC	1764	J (3)	Stock development over time ICES cannot assess the stock and exploitation status relative to maximum sustainable yield (MSY) and precaution

- Only stocks with reported landings, ICES advice, and part of common TACs were included; 26 stocks across 8 species
- Additional data: species life history traits ($L\infty$, L_{mat} , fecundity)

Analysis

Advice by ecoregion: many stocks span multiple ecoregions

 Annual proportion of landings per ecoregion for each stock to split the annual ICES advice

- Comparison of landings to advice
 - Stock-specific exploitation
 - Explore trends of overshooting and/or undershooting with ICES categories and life-history traits

Results

> 1 = overshoot

< 0 = undershoot

Blonde ray consistently overshot in all ecoregions

Thornback ray often undershot

Cuckoo ray mostly undershot in Bay of Biscay and Iberian coast

Species:

Blonde ray (Raja brachyura)

Sandy ray (Raja circularis)

Spotted ray (Raja montagui)

Thornback ray (Raja clavata)

Undulate ray (Raja undulata)

Cuckoo ray (Leucoraja naevus)

Shagreen ray (Leucoraja fullonica)

Small-eved ray (Raia microocellata)

ICES categories and life-history

Celtic Seas

Category 5 & 6 -> data-limited, no quantitative assessment: more prone to be overshot (GNS, CS)

Bay of Biscay and Iberian coast

Most vulnerable species consistently overshot (high $L\infty$ and L_{mat} , low fecundity)

Less vulnerable species (low $L\infty$ and L_{mat} , high fecundity) had mixed overshooting/undershooting

Ecoregion: O Greater North Sea

Key points

- Exploitation of ICES advice:
 - Blonde ray, cuckoo ray and spotted ray frequently overshot
 - Thornback ray often undershot

- Drivers of overshooting:
 - Economic incentives
 - Catchability
 - ICES advice framework
 - Common TAC flexibility

Drivers of overshooting

Economic incentives	Blonde ray highest market value (€2.50kg ⁻¹), compared to €2.00kg ⁻¹ for thornback ray.	
Catchability > economics	Cuckoo ray and spotted ray have lower average prices (<€1.50kg ⁻¹ and ~€2.00 kg ⁻¹ resp.); In some areas it may be linked to aggregations in shallow coastal waters -> increasing catchability	
	Species Blonde ray Cuckoo ray Sandy ray Shagreen ray Small-eyed ray Specied ray Thomback ray Undulate ray Undulate ray	

2013 2014 2015 2016 2017 2018 2019 2020 2021

Drivers of overshooting

Economic incentives	Blonde ray highest market value (€2.50kg ⁻¹), compared to €2.00kg ⁻¹ for thornback ray.
Catchability > economics	Cuckoo ray and spotted ray have lower average prices (<€1.50kg ⁻¹ and ~€2.00 kg ⁻¹ resp.); In some areas it may be linked to aggregations in shallow coastal waters -> increasing catchability
ICES advice framework	Historically advice was based on species-specific landings, following by precautionary approach in 2012> advised catches may not necessarily track changes in stock status (e.g. advice cap of 20%)
Common TAC flexibility	Fishers can land those species they catch and may not be bound by restrictions on certain species or stocks. Expectation that catch is scaled with single-stock advice is not met -> Thornback ray is most abundant species but mostly undershot

Management challenges

- Single-stock TACs to better link advice, stock status and exploitation, but...
 - Bycatch of non-targeted skates/rays (potential choke-species)
 - Highly uncertain discard data, and survival varies
 - Quantitative assessments for small stocks difficult due to data limitations
- Existing (local) measures may limit exploitation; seasonal closures, gear limits, different minimum landing sizes (MLS)
- Improved stock assessments; MSY approach in category 2 or 3
 - TACs might increase -> unknown how this will affect management, fisher behaviour or levels of exploitation

Thank you

ICES Journal of Marine Science, 2024, Vol. 0, Issue 0, 1–10 https://doi.org/10.1093/icesjms/fsae008 Received: 14 July 2023; revised: 16 January 2024; accepted: 19 January 2024 Original Article

Comparisons of landings to scientific advice indicate overshooting within the common TAC for skates and rays in the Northeast Atlantic

Jurgen Batsleer ¹, Christopher A. Griffiths ², Katinka Bleeker ¹, Graham Johnston³, Massimiliano Cardinale ², Pascal Lorance ⁴

¹Wageningen Marine Research, Wageningen University and Research, PO Box 68, 1970 AB IJmuiden, The Netherlands ²Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, SE-453 30 Lysekil. Sweden

³Marine Institute, Rinville, Oranmore, Galway H91 R673, Ireland

⁴DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro—Agrocampus Ouest, 44311 Nantes, France *Corresponding author: Wageningen Marine Research, Wageningen University and Research, 1970 AB IJmuiden, The Netherlands. E-mail: Jurgen.Batsleer@wur.nl